When Secure Isn’t: Assessing the Security of Machine Learning Model Sharing

AIにより推定されたラベル
Abstract

The rise of model-sharing through frameworks and dedicated hubs makes Machine Learning significantly more accessible. Despite their benefits, these tools expose users to underexplored security risks, while security awareness remains limited among both practitioners and developers. To enable a more security-conscious culture in Machine Learning model sharing, in this paper we evaluate the security posture of frameworks and hubs, assess whether security-oriented mechanisms offer real protection, and survey how users perceive the security narratives surrounding model sharing. Our evaluation shows that most frameworks and hubs address security risks partially at best, often by shifting responsibility to the user. More concerningly, our analysis of frameworks advertising security-oriented settings and complete model sharing uncovered six 0-day vulnerabilities enabling arbitrary code execution. Through this analysis, we debunk the misconceptions that the model-sharing problem is largely solved and that its security can be guaranteed by the file format used for sharing. As expected, our survey shows that the surrounding security narrative leads users to consider security-oriented settings as trustworthy, despite the weaknesses shown in this work. From this, we derive takeaways and suggestions to strengthen the security of model-sharing ecosystems.

タイトルとURLをコピーしました