AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Protecting sensitive data is an essential part of security in cloud computing. However, only specific privileged individuals have access to view or interact with this data; therefore, it is unscalable to depend on these individuals also to maintain the software. A solution to this is to allow non-privileged individuals access to maintain these systems but mask sensitive information from egressing. To this end, we have created a machine-learning model to predict and redact fields with sensitive data. This work concentrates on Azure PowerShell, showing how it applies to other command-line interfaces and APIs. Using the F5-score as a weighted metric, we demonstrate different transformation techniques to map this problem from an unknown field to the well-researched area of natural language processing.