透かし評価

A Study of EV BMS Cyber Security Based on Neural Network SOC Prediction

Authors: Syed Rahman, Haneen Aburub, Yemeserach Mekonnen, Arif I. Sarwat | Published: 2018-06-07
サイバーセキュリティ
気候情報
透かし評価

MEBN-RM: A Mapping between Multi-Entity Bayesian Network and Relational Model

Authors: Cheol Young Park, Kathryn Blackmond Laskey | Published: 2018-06-06 | Updated: 2018-06-08
リレーショナルデータベース
透かし評価
関数マッピング

Killing four birds with one Gaussian process: the relation between different test-time attacks

Authors: Kathrin Grosse, Michael T. Smith, Michael Backes | Published: 2018-06-06 | Updated: 2020-11-29
プロンプトリーキング
メンバーシップ推論
透かし評価

Set-based Obfuscation for Strong PUFs against Machine Learning Attacks

Authors: Jiliang Zhang, Chaoqun Shen | Published: 2018-06-06 | Updated: 2019-11-13
サイバーセキュリティ
ユーザー認証システム
透かし評価

An Explainable Adversarial Robustness Metric for Deep Learning Neural Networks

Authors: Chirag Agarwal, Bo Dong, Dan Schonfeld, Anthony Hoogs | Published: 2018-06-05 | Updated: 2018-06-06
敵対的サンプルの検知
敵対的移転性
透かし評価

ML-Leaks: Model and Data Independent Membership Inference Attacks and Defenses on Machine Learning Models

Authors: Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, Michael Backes | Published: 2018-06-04 | Updated: 2018-12-14
メンバーシップ推論
モデル抽出攻撃
透かし評価

Detecting Adversarial Examples via Key-based Network

Authors: Pinlong Zhao, Zhouyu Fu, Ou wu, Qinghua Hu, Jun Wang | Published: 2018-06-02
敵対的学習
敵対的移転性
透かし評価

Tokenized Data Markets

Authors: Bharath Ramsundar, Roger Chen, Alok Vasudev, Rob Robbins, Artur Gorokh | Published: 2018-05-31
データ流分析
投票メカニズム
透かし評価

Defending Against Machine Learning Model Stealing Attacks Using Deceptive Perturbations

Authors: Taesung Lee, Benjamin Edwards, Ian Molloy, Dong Su | Published: 2018-05-31 | Updated: 2018-12-13
モデルの頑健性保証
モデル抽出攻撃の検知
透かし評価

Greedy Attack and Gumbel Attack: Generating Adversarial Examples for Discrete Data

Authors: Puyudi Yang, Jianbo Chen, Cho-Jui Hsieh, Jane-Ling Wang, Michael I. Jordan | Published: 2018-05-31
敵対的移転性
特徴重要度分析
透かし評価