Guarding Machine Learning Hardware Against Physical Side-Channel Attacks Authors: Anuj Dubey, Rosario Cammarota, Vikram Suresh, Aydin Aysu | Published: 2021-09-01 ウォーターマーキング計算効率防御メカニズム 2021.09.01 2025.04.03 文献データベース
OACAL: Finding Module-consistent Specifications to Secure Systems from Weakened User Obligations Authors: Pengcheng Jiang, Kenji Tei | Published: 2021-08-16 | Updated: 2021-11-02 アルゴリズムモジュール再構成計算効率 2021.08.16 2025.04.03 文献データベース
Fedlearn-Algo: A flexible open-source privacy-preserving machine learning platform Authors: Bo Liu, Chaowei Tan, Jiazhou Wang, Tao Zeng, Huasong Shan, Houpu Yao, Heng Huang, Peng Dai, Liefeng Bo, Yanqing Chen | Published: 2021-07-08 | Updated: 2021-07-30 プライバシー保護メカニズム計算効率連合学習 2021.07.08 2025.04.03 文献データベース
Certifiably Robust Interpretation via Renyi Differential Privacy Authors: Ao Liu, Xiaoyu Chen, Sijia Liu, Lirong Xia, Chuang Gan | Published: 2021-07-04 プライバシー分析ロバスト性計算効率 2021.07.04 2025.04.03 文献データベース
Bayesian Attention Belief Networks Authors: Shujian Zhang, Xinjie Fan, Bo Chen, Mingyuan Zhou | Published: 2021-06-09 自然言語処理計算効率評価手法 2021.06.09 2025.04.03 文献データベース
Robustifying $\ell_\infty$ Adversarial Training to the Union of Perturbation Models Authors: Ameya D. Patil, Michael Tuttle, Alexander G. Schwing, Naresh R. Shanbhag | Published: 2021-05-31 | Updated: 2021-06-11 敵対的訓練脆弱性評価手法計算効率 2021.05.31 2025.04.03 文献データベース
Fed-EINI: An Efficient and Interpretable Inference Framework for Decision Tree Ensembles in Federated Learning Authors: Xiaolin Chen, Shuai Zhou, Bei guan, Kai Yang, Hao Fan, Hu Wang, Yongji Wang | Published: 2021-05-20 | Updated: 2021-12-08 プライバシー保護手法計算効率連合学習 2021.05.20 2025.04.03 文献データベース
An Efficient Learning Framework For Federated XGBoost Using Secret Sharing And Distributed Optimization Authors: Lunchen Xie, Jiaqi Liu, Songtao Lu, Tsung-hui Chang, Qingjiang Shi | Published: 2021-05-12 分散学習計算効率連合学習 2021.05.12 2025.04.03 文献データベース
SIRNN: A Math Library for Secure RNN Inference Authors: Deevashwer Rathee, Mayank Rathee, Rahul Kranti Kiran Goli, Divya Gupta, Rahul Sharma, Nishanth Chandran, Aseem Rastogi | Published: 2021-05-10 ライブラリ分類深層学習手法計算効率 2021.05.10 2025.04.03 文献データベース
Quantifying identifiability to choose and audit $ε$ in differentially private deep learning Authors: Daniel Bernau, Günther Eibl, Philip W. Grassal, Hannah Keller, Florian Kerschbaum | Published: 2021-03-04 | Updated: 2021-07-20 DP-SGD統計的手法計算効率 2021.03.04 2025.04.03 文献データベース