攻撃の評価

Adversarial Attacks on Machine Learning Cybersecurity Defences in Industrial Control Systems

Authors: Eirini Anthi, Lowri Williams, Matilda Rhode, Pete Burnap, Adam Wedgbury | Published: 2020-04-10
攻撃の評価
攻撃検出
防御手法

Luring of transferable adversarial perturbations in the black-box paradigm

Authors: Rémi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre | Published: 2020-04-10 | Updated: 2021-03-03
堅牢性向上手法
攻撃の評価
敵対的サンプル

TOG: Targeted Adversarial Objectness Gradient Attacks on Real-time Object Detection Systems

Authors: Ka-Ho Chow, Ling Liu, Mehmet Emre Gursoy, Stacey Truex, Wenqi Wei, Yanzhao Wu | Published: 2020-04-09
攻撃の評価
脆弱性評価手法
防御手法

Feature Partitioning for Robust Tree Ensembles and their Certification in Adversarial Scenarios

Authors: Stefano Calzavara, Claudio Lucchese, Federico Marcuzzi, Salvatore Orlando | Published: 2020-04-07
ロバスト性に関する評価
攻撃の評価
最大カバレッジ問題

An Overview of Federated Deep Learning Privacy Attacks and Defensive Strategies

Authors: David Enthoven, Zaid Al-Ars | Published: 2020-04-01
ポイズニング
攻撃の評価
防御手法

Confidence-Calibrated Adversarial Training: Generalizing to Unseen Attacks

Authors: David Stutz, Matthias Hein, Bernt Schiele | Published: 2019-10-14 | Updated: 2020-06-30
ポイズニング
攻撃の評価
敵対的攻撃手法

Eavesdrop the Composition Proportion of Training Labels in Federated Learning

Authors: Lixu Wang, Shichao Xu, Xiao Wang, Qi Zhu | Published: 2019-10-14 | Updated: 2019-10-27
バックドア攻撃
ポイズニング
攻撃の評価

Policy Poisoning in Batch Reinforcement Learning and Control

Authors: Yuzhe Ma, Xuezhou Zhang, Wen Sun, Xiaojin Zhu | Published: 2019-10-13 | Updated: 2019-10-31
強化学習環境
攻撃の評価
攻撃者や悪意のあるデバイス

On Robustness of Neural Ordinary Differential Equations

Authors: Hanshu Yan, Jiawei Du, Vincent Y. F. Tan, Jiashi Feng | Published: 2019-10-12 | Updated: 2022-03-03
モデルの設計や精度
攻撃の評価
防御手法の効果分析

Extraction of Complex DNN Models: Real Threat or Boogeyman?

Authors: Buse Gul Atli, Sebastian Szyller, Mika Juuti, Samuel Marchal, N. Asokan | Published: 2019-10-11 | Updated: 2020-05-27
Out-of-Distribution検出
モデルの設計や精度
攻撃の評価