敵対的攻撃

Exploring Model Dynamics for Accumulative Poisoning Discovery

Authors: Jianing Zhu, Xiawei Guo, Jiangchao Yao, Chao Du, Li He, Shuo Yuan, Tongliang Liu, Liang Wang, Bo Han | Published: 2023-06-06
バックドア攻撃
モデルの設計や精度
敵対的攻撃

Evading Black-box Classifiers Without Breaking Eggs

Authors: Edoardo Debenedetti, Nicholas Carlini, Florian Tramèr | Published: 2023-06-05 | Updated: 2024-02-14
攻撃の評価
敵対的サンプル
敵対的攻撃

Poisoning Network Flow Classifiers

Authors: Giorgio Severi, Simona Boboila, Alina Oprea, John Holodnak, Kendra Kratkiewicz, Jason Matterer | Published: 2023-06-02
バックドア攻撃
ポイズニング
敵対的攻撃

A Closer Look at the Adversarial Robustness of Deep Equilibrium Models

Authors: Zonghan Yang, Tianyu Pang, Yang Liu | Published: 2023-06-02
ロバスト性に関する評価
敵対的攻撃
適応型敵対的訓練

Adaptive Attractors: A Defense Strategy against ML Adversarial Collusion Attacks

Authors: Jiyi Zhang, Han Fang, Ee-Chien Chang | Published: 2023-06-02
攻撃の評価
敵対的攻撃
透かし評価

Adversarial-Aware Deep Learning System based on a Secondary Classical Machine Learning Verification Approach

Authors: Mohammed Alkhowaiter, Hisham Kholidy, Mnassar Alyami, Abdulmajeed Alghamdi, Cliff Zou | Published: 2023-06-01
敵対的サンプル
敵対的攻撃
透かし評価

Deception by Omission: Using Adversarial Missingness to Poison Causal Structure Learning

Authors: Deniz Koyuncu, Alex Gittens, Bülent Yener, Moti Yung | Published: 2023-05-31
バックドア攻撃
敵対的攻撃
欠損データを利用した因果発見

Robust Lipschitz Bandits to Adversarial Corruptions

Authors: Yue Kang, Cho-Jui Hsieh, Thomas C. M. Lee | Published: 2023-05-29 | Updated: 2023-10-08
強化学習
敵対的攻撃
機械学習手法

On Evaluating Adversarial Robustness of Large Vision-Language Models

Authors: Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Cheung, Min Lin | Published: 2023-05-26 | Updated: 2023-10-29
LLM性能評価
プロンプトインジェクション
敵対的攻撃

Investigating Adversarial Vulnerability and Implicit Bias through Frequency Analysis

Authors: Lorenzo Basile, Nikos Karantzas, Alberto D'Onofrio, Luca Bortolussi, Alex Rodriguez, Fabio Anselmi | Published: 2023-05-24 | Updated: 2024-07-17
敵対的サンプル
敵対的攻撃
深層学習手法