ODE guided Neural Data Augmentation Techniques for Time Series Data and its Benefits on Robustness Authors: Anindya Sarkar, Anirudh Sunder Raj, Raghu Sesha Iyengar | Published: 2019-10-15 | Updated: 2020-09-27 データ拡張技術モデルの堅牢性対抗的学習 2019.10.15 2025.04.03 文献データベース
Partially Encrypted Machine Learning using Functional Encryption Authors: Theo Ryffel, Edouard Dufour-Sans, Romain Gay, Francis Bach, David Pointcheval | Published: 2019-05-24 | Updated: 2021-09-23 プライバシー手法モデル性能評価対抗的学習 2019.05.24 2025.04.03 文献データベース
Learning More Robust Features with Adversarial Training Authors: Shuangtao Li, Yuanke Chen, Yanlin Peng, Lin Bai | Published: 2018-04-20 対抗的学習敵対的学習透かし技術 2018.04.20 2025.04.03 文献データベース
Adversarial Risk and the Dangers of Evaluating Against Weak Attacks Authors: Jonathan Uesato, Brendan O'Donoghue, Aaron van den Oord, Pushmeet Kohli | Published: 2018-02-15 | Updated: 2018-06-12 対抗的学習敵対的学習敵対的攻撃 2018.02.15 2025.04.03 文献データベース
Mitigating Evasion Attacks to Deep Neural Networks via Region-based Classification Authors: Xiaoyu Cao, Neil Zhenqiang Gong | Published: 2017-09-17 | Updated: 2019-12-31 モデルの頑健性保証対抗的学習敵対的サンプルの検知 2017.09.17 2025.04.03 文献データベース
EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples Authors: Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, Cho-Jui Hsieh | Published: 2017-09-13 | Updated: 2018-02-10 モデルの頑健性保証対抗的学習敵対的サンプル 2017.09.13 2025.04.03 文献データベース
Towards Proving the Adversarial Robustness of Deep Neural Networks Authors: Guy Katz, Clark Barrett, David L. Dill, Kyle Julian, Mykel J. Kochenderfer | Published: 2017-09-08 モデルの頑健性保証ロバスト性向上対抗的学習 2017.09.08 2025.04.03 文献データベース
Adequacy of the Gradient-Descent Method for Classifier Evasion Attacks Authors: Yi Han, Benjamin I. P. Rubinstein | Published: 2017-04-06 | Updated: 2017-05-25 ポイズニングモデルの頑健性保証対抗的学習 2017.04.06 2025.04.03 文献データベース
Comment on “Biologically inspired protection of deep networks from adversarial attacks” Authors: Wieland Brendel, Matthias Bethge | Published: 2017-04-05 トリガーの検知モデルの頑健性保証対抗的学習 2017.04.05 2025.04.03 文献データベース