公平性評価

Differentially Private Post-Processing for Fair Regression

Authors: Ruicheng Xian, Qiaobo Li, Gautam Kamath, Han Zhao | Published: 2024-05-07
ウォーターマーキング
プライバシー保護手法
公平性評価

Privacy at a Price: Exploring its Dual Impact on AI Fairness

Authors: Mengmeng Yang, Ming Ding, Youyang Qu, Wei Ni, David Smith, Thierry Rakotoarivelo | Published: 2024-04-15
プライバシー保護
プライバシー保護手法
公平性評価

Privacy for Fairness: Information Obfuscation for Fair Representation Learning with Local Differential Privacy

Authors: Songjie Xie, Youlong Wu, Jiaxuan Li, Ming Ding, Khaled B. Letaief | Published: 2024-02-16
プライバシー保護手法
公平性評価
情報隠蔽手法

Position Paper: Assessing Robustness, Privacy, and Fairness in Federated Learning Integrated with Foundation Models

Authors: Xi Li, Jiaqi Wang | Published: 2024-02-02
プライバシー保護
公平性評価
連合学習

In the Name of Fairness: Assessing the Bias in Clinical Record De-identification

Authors: Yuxin Xiao, Shulammite Lim, Tom Joseph Pollard, Marzyeh Ghassemi | Published: 2023-05-18 | Updated: 2024-01-03
プライバシー保護手法
公平性評価
医療AIの脅威

(Local) Differential Privacy has NO Disparate Impact on Fairness

Authors: Héber H. Arcolezi, Karima Makhlouf, Catuscia Palamidessi | Published: 2023-04-25 | Updated: 2023-08-01
プライバシー評価
公平性評価
最適化手法

PrivFairFL: Privacy-Preserving Group Fairness in Federated Learning

Authors: Sikha Pentyala, Nicola Neophytou, Anderson Nascimento, Martine De Cock, Golnoosh Farnadi | Published: 2022-05-23 | Updated: 2022-08-26
プライバシー手法
公平性評価
統計的手法

Statistical inference for individual fairness

Authors: Subha Maity, Songkai Xue, Mikhail Yurochkin, Yuekai Sun | Published: 2021-03-30
リスク評価手法
公平性評価
最適化手法

Ethical Adversaries: Towards Mitigating Unfairness with Adversarial Machine Learning

Authors: Pieter Delobelle, Paul Temple, Gilles Perrouin, Benoît Frénay, Patrick Heymans, Bettina Berendt | Published: 2020-05-14 | Updated: 2020-09-01
公平性評価
敵対的サンプル
機械学習の応用