モデルの頑健性保証

Mitigation of Adversarial Attacks through Embedded Feature Selection

Authors: Ziyi Bao, Luis Muñoz-González, Emil C. Lupu | Published: 2018-08-16
モデルの頑健性保証
ロバスト性分析
敵対的攻撃

Using Randomness to Improve Robustness of Machine-Learning Models Against Evasion Attacks

Authors: Fan Yang, Zhiyuan Chen | Published: 2018-08-10
モデルの頑健性保証
ロバスト性分析
敵対的攻撃

Adversarial Vision Challenge

Authors: Wieland Brendel, Jonas Rauber, Alexey Kurakin, Nicolas Papernot, Behar Veliqi, Marcel Salathé, Sharada P. Mohanty, Matthias Bethge | Published: 2018-08-06 | Updated: 2018-12-06
モデルの頑健性保証
敵対的学習
敵対的攻撃

Structured Adversarial Attack: Towards General Implementation and Better Interpretability

Authors: Kaidi Xu, Sijia Liu, Pu Zhao, Pin-Yu Chen, Huan Zhang, Quanfu Fan, Deniz Erdogmus, Yanzhi Wang, Xue Lin | Published: 2018-08-05 | Updated: 2019-02-19
モデルの頑健性保証
敵対的攻撃
解釈手法

ATMPA: Attacking Machine Learning-based Malware Visualization Detection Methods via Adversarial Examples

Authors: Xinbo Liu, Jiliang Zhang, Yaping Lin, He Li | Published: 2018-08-05 | Updated: 2019-12-30
モデルの頑健性保証
モデル抽出攻撃
敵対的攻撃

DeepCloak: Adversarial Crafting As a Defensive Measure to Cloak Processes

Authors: Mehmet Sinan Inci, Thomas Eisenbarth, Berk Sunar | Published: 2018-08-03 | Updated: 2020-04-23
モデルの頑健性保証
敵対的サンプル
敵対的攻撃

Simultaneous Adversarial Training – Learn from Others Mistakes

Authors: Zukang Liao | Published: 2018-07-21 | Updated: 2018-09-10
モデルの頑健性保証
ロバスト性に関する評価
敵対的攻撃

Motivating the Rules of the Game for Adversarial Example Research

Authors: Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, George E. Dahl | Published: 2018-07-18 | Updated: 2018-07-20
モデルの頑健性保証
敵対的サンプル
敵対的攻撃

Implicit Generative Modeling of Random Noise during Training for Adversarial Robustness

Authors: Priyadarshini Panda, Kaushik Roy | Published: 2018-07-05 | Updated: 2019-05-31
データ生成
モデルの頑健性保証
敵対的学習

Adversarial Reprogramming of Neural Networks

Authors: Gamaleldin F. Elsayed, Ian Goodfellow, Jascha Sohl-Dickstein | Published: 2018-06-28 | Updated: 2018-11-29
モデルの頑健性保証
敵対的サンプル
透かし