AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
We present a way to apply topological data analysis for classifying encrypted bits into distinct classes. Persistent homology is applied to generate topological features of a point cloud obtained from sets of encryptions. We see that this machine learning pipeline is able to classify our data successfully where classical models of machine learning fail to perform the task. We also see that this pipeline works as a dimensionality reduction method making this approach to classify encrypted data a realistic method to classify the given encryptioned bits.