AIにより推定されたラベル
ハイパーパラメータ最適化 差分プライバシー パフォーマンス評価
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Differentially private learning on real-world data poses challenges for standard machine learning practice: privacy guarantees are difficult to interpret, hyperparameter tuning on private data reduces the privacy budget, and ad-hoc privacy attacks are often required to test model privacy. We introduce three tools to make differentially private machine learning more practical: (1) simple sanity checks which can be carried out in a centralized manner before training, (2) an adaptive clipping bound to reduce the effective number of tuneable privacy parameters, and (3) we show that large-batch training improves model performance.