差分プライバシー

PAC-Private Responses with Adversarial Composition

Authors: Xiaochen Zhu, Mayuri Sridhar, Srinivas Devadas | Published: 2026-01-20
トリガーの検知
プライバシー保護
差分プライバシー

Privacy Enhanced PEFT: Tensor Train Decomposition Improves Privacy Utility Tradeoffs under DP-SGD

Authors: Pradip Kunwar, Minh Vu, Maanak Gupta, Manish Bhattarai | Published: 2026-01-15
プライバシー保護
差分プライバシー
性能評価

SoK: Privacy-aware LLM in Healthcare: Threat Model, Privacy Techniques, Challenges and Recommendations

Authors: Mohoshin Ara Tahera, Karamveer Singh Sidhu, Shuvalaxmi Dass, Sajal Saha | Published: 2026-01-15
LLM活用
プライバシー保護
差分プライバシー

SoK: Enhancing Cryptographic Collaborative Learning with Differential Privacy

Authors: Francesco Capano, Jonas Böhler, Benjamin Weggenmann | Published: 2026-01-14
プライバシー保護
差分プライバシー
連合学習

Differential Privacy for Secure Machine Learning in Healthcare IoT-Cloud Systems

Authors: N Mangala, Murtaza Rangwala, S Aishwarya, B Eswara Reddy, Rajkumar Buyya, KR Venugopal, SS Iyengar, LM Patnaik | Published: 2025-12-11
バックドア攻撃用の毒データの検知
プライバシー保護技術
差分プライバシー

Scaling Trust in Quantum Federated Learning: A Multi-Protocol Privacy Design

Authors: Dev Gurung, Shiva Raj Pokhrel | Published: 2025-12-03
プライバシー保護
差分プライバシー
連合学習

Observational Auditing of Label Privacy

Authors: Iden Kalemaj, Luca Melis, Maxime Boucher, Ilya Mironov, Saeed Mahloujifar | Published: 2025-11-18
バックドア攻撃用の毒データの検知
プライバシー手法
差分プライバシー

GRPO Privacy Is at Risk: A Membership Inference Attack Against Reinforcement Learning With Verifiable Rewards

Authors: Yule Liu, Heyi Zhang, Jinyi Zheng, Zhen Sun, Zifan Peng, Tianshuo Cong, Yilong Yang, Xinlei He, Zhuo Ma | Published: 2025-11-18
プライバシー手法
メンバーシップ推論
差分プライバシー

Tight and Practical Privacy Auditing for Differentially Private In-Context Learning

Authors: Yuyang Xia, Ruixuan Liu, Li Xiong | Published: 2025-11-17
プライバシー手法
匿名化技術
差分プライバシー

Secure Sparse Matrix Multiplications and their Applications to Privacy-Preserving Machine Learning

Authors: Marc Damie, Florian Hahn, Andreas Peter, Jan Ramon | Published: 2025-10-16
データ保護
プライバシー保護機械学習
差分プライバシー