AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Adversarial robustness is a critical challenge in deploying deep neural networks for real-world applications. While adversarial training is a widely recognized defense strategy, most existing studies focus on balanced datasets, overlooking the prevalence of long-tailed distributions in real-world data, which significantly complicates robustness. This paper provides a comprehensive analysis of adversarial training under long-tailed distributions and identifies limitations in the current state-of-the-art method, AT-BSL, in achieving robust performance under such conditions. To address these challenges, we propose a novel training framework, TAET, which integrates an initial stabilization phase followed by a stratified equalization adversarial training phase. Additionally, prior work on long-tailed robustness has largely ignored the crucial evaluation metric of balanced accuracy. To bridge this gap, we introduce the concept of balanced robustness, a comprehensive metric tailored for assessing robustness under long-tailed distributions. Extensive experiments demonstrate that our method surpasses existing advanced defenses, achieving significant improvements in both memory and computational efficiency. This work represents a substantial advancement in addressing robustness challenges in real-world applications. Our code is available at: https://github.com/BuhuiOK/TAET-Two-Stage-Adversarial-Equalization-Training-on-Long-Tailed-Distributions.