SCAR: Power Side-Channel Analysis at RTL-Level

AIにより推定されたラベル
Abstract

Power side-channel attacks exploit the dynamic power consumption of cryptographic operations to leak sensitive information of encryption hardware. Therefore, it is necessary to conduct power side-channel analysis for assessing the susceptibility of cryptographic systems and mitigating potential risks. Existing power side-channel analysis primarily focuses on post-silicon implementations, which are inflexible in addressing design flaws, leading to costly and time-consuming post-fabrication design re-spins. Hence, pre-silicon power side-channel analysis is required for early detection of vulnerabilities to improve design robustness. In this paper, we introduce SCAR, a novel pre-silicon power side-channel analysis framework based on Graph Neural Networks (GNN). SCAR converts register-transfer level (RTL) designs of encryption hardware into control-data flow graphs and use that to detect the design modules susceptible to side-channel leakage. Furthermore, we incorporate a deep learning-based explainer in SCAR to generate quantifiable and human-accessible explanation of our detection and localization decisions. We have also developed a fortification component as a part of SCAR that uses large-language models (LLM) to automatically generate and insert additional design code at the localized zone to shore up the side-channel leakage. When evaluated on popular encryption algorithms like AES, RSA, and PRESENT, and postquantum cryptography algorithms like Saber and CRYSTALS-Kyber, SCAR, achieves up to 94.49 Additionally, through explainability analysis, SCAR reduces features for GNN model training by 57 SCAR will transform the security-critical hardware design cycle, resulting in faster design closure at a reduced design cost.

タイトルとURLをコピーしました