AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Model stealing attack is increasingly threatening the confidentiality of machine learning models deployed in the cloud. Recent studies reveal that adversaries can exploit data synthesis techniques to steal machine learning models even in scenarios devoid of real data, leading to data-free model stealing attacks. Existing defenses against such attacks suffer from limitations, including poor effectiveness, insufficient generalization ability, and low comprehensiveness. In response, this paper introduces a novel defense framework named Model-Guardian. Comprising two components, Data-Free Model Stealing Detector (DFMS-Detector) and Deceptive Predictions (DPreds), Model-Guardian is designed to address the shortcomings of current defenses with the help of the artifact properties of synthetic samples and gradient representations of samples. Extensive experiments on seven prevalent data-free model stealing attacks showcase the effectiveness and superior generalization ability of Model-Guardian, outperforming eleven defense methods and establishing a new state-of-the-art performance. Notably, this work pioneers the utilization of various GANs and diffusion models for generating highly realistic query samples in attacks, with Model-Guardian demonstrating accurate detection capabilities.