AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Model extraction attacks aim to replicate the functionality of a black-box model through query access, threatening the intellectual property (IP) of machine-learning-as-a-service (MLaaS) providers. Defending against such attacks is challenging, as it must balance efficiency, robustness, and utility preservation in the real-world scenario. Despite the recent advances, most existing defenses presume that attacker queries have out-of-distribution (OOD) samples, enabling them to detect and disrupt suspicious inputs. However, this assumption is increasingly unreliable, as modern models are trained on diverse datasets and attackers often operate under limited query budgets. As a result, the effectiveness of these defenses is significantly compromised in realistic deployment scenarios. To address this gap, we propose MISLEADER (enseMbles of dIStiLled modEls Against moDel ExtRaction), a novel defense strategy that does not rely on OOD assumptions. MISLEADER formulates model protection as a bilevel optimization problem that simultaneously preserves predictive fidelity on benign inputs and reduces extractability by potential clone models. Our framework combines data augmentation to simulate attacker queries with an ensemble of heterogeneous distilled models to improve robustness and diversity. We further provide a tractable approximation algorithm and derive theoretical error bounds to characterize defense effectiveness. Extensive experiments across various settings validate the utility-preserving and extraction-resistant properties of our proposed defense strategy. Our code is available at https://github.com/LabRAI/MISLEADER.