AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
The success of large language models for code relies on vast amounts of code data, including public open-source repositories, such as GitHub, and private, confidential code from companies. This raises concerns about intellectual property compliance and the potential unauthorized use of license-restricted code. While membership inference (MI) techniques have been proposed to detect such unauthorized usage, their effectiveness can be undermined by semantically equivalent code transformation techniques, which modify code syntax while preserving semantic. In this work, we systematically investigate whether semantically equivalent code transformation rules might be leveraged to evade MI detection. The results reveal that model accuracy drops by only 1.5
