AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
DDoS attacks are one of the most prevalent and harmful cybersecurity threats faced by organizations and individuals today. In recent years, the complexity and frequency of DDoS attacks have increased significantly, making it challenging to detect and mitigate them effectively. The study analyzes various types of DDoS attacks, including volumetric, protocol, and application layer attacks, and discusses the characteristics, impact, and potential targets of each type. It also examines the existing techniques used for DDoS attack detection, such as packet filtering, intrusion detection systems, and machine learning-based approaches, and their strengths and limitations. Moreover, the study explores the prevention techniques employed to mitigate DDoS attacks, such as firewalls, rate limiting , CPP and ELD mechanism. It evaluates the effectiveness of each approach and its suitability for different types of attacks and environments. In conclusion, this study provides a comprehensive overview of the different types of DDoS attacks, their detection, and prevention techniques. It aims to provide insights and guidelines for organizations and individuals to enhance their cybersecurity posture and protect against DDoS attacks.