AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
It has been demonstrated that adversarial graphs, i.e., graphs with imperceptible perturbations added, can cause deep graph models to fail on node/graph classification tasks. In this paper, we extend adversarial graphs to the problem of community detection which is much more difficult. We focus on black-box attack and aim to hide targeted individuals from the detection of deep graph community detection models, which has many applications in real-world scenarios, for example, protecting personal privacy in social networks and understanding camouflage patterns in transaction networks. We propose an iterative learning framework that takes turns to update two modules: one working as the constrained graph generator and the other as the surrogate community detection model. We also find that the adversarial graphs generated by our method can be transferred to other learning based community detection models.