Differential Privacy for Secure Machine Learning in Healthcare IoT-Cloud Systems

Labels Predicted by AI
Abstract

Healthcare has become exceptionally sophisticated, as wearables and connected medical devices are revolutionising remote patient monitoring, emergency response, medication management, diagnosis, and predictive and prescriptive analytics. Internet of Things and Cloud computing integrated systems (IoT-Cloud) facilitate sensing, automation, and processing for these healthcare applications. While real-time response is crucial for alleviating patient emergencies, protecting patient privacy is extremely important in data-driven healthcare. In this paper, we propose a multi-layer IoT, Edge and Cloud architecture to enhance the speed of response for emergency healthcare by distributing tasks based on response criticality and permanence of storage. Privacy of patient data is assured by proposing a Differential Privacy framework across several machine learning models such as K-means, Logistic Regression, Random Forest and Naive Bayes. We establish a comprehensive threat model identifying three adversary classes and evaluate Laplace, Gaussian, and hybrid noise mechanisms across varying privacy budgets, with supervised algorithms achieving up to 86

Copied title and URL