Fooling Computer Vision into Inferring the Wrong Body Mass Index

AIにより推定されたラベル
Abstract

Recently it’s been shown that neural networks can use images of human faces to accurately predict Body Mass Index (BMI), a widely used health indicator. In this paper we demonstrate that a neural network performing BMI inference is indeed vulnerable to test-time adversarial attacks. This extends test-time adversarial attacks from classification tasks to regression. The application we highlight is BMI inference in the insurance industry, where such adversarial attacks imply a danger of insurance fraud.

タイトルとURLをコピーしました