AIにより推定されたラベル
ネットワークパケット管理 MLベースのIDS データセット分析
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Many approaches have evolved to enhance network attacks detection anomaly using SNMP-MIBs. Most of these approaches focus on machine learning algorithms with a lot of SNMP-MIB database parameters, which may consume most of hardware resources (CPU, memory, and bandwidth). In this paper we introduce an efficient detection model to detect network attacks anomaly using Lazy.IBk as a machine learning classifier and Correlation, and ReliefF as attribute evaluators on SNMP-MIB interface parameters. This model achieved accurate results (100 minimal hardware resources consumption. Thus, this model can be adopted in intrusion detection system (IDS) to increase its performance and efficiency.