AIにより推定されたラベル
プロンプトインジェクション フィッシング検出 データセット生成
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Phishing attacks attempt to deceive users into stealing sensitive information, posing a significant cybersecurity threat. Advances in machine learning (ML) and deep learning (DL) have led to the development of numerous phishing webpage detection solutions, but these models remain vulnerable to adversarial attacks. Evaluating their robustness against adversarial phishing webpages is essential. Existing tools contain datasets of pre-designed phishing webpages for a limited number of brands, and lack diversity in phishing features. To address these challenges, we develop PhishOracle, a tool that generates adversarial phishing webpages by embedding diverse phishing features into legitimate webpages. We evaluate the robustness of three existing task-specific models – Stack model, VisualPhishNet, and Phishpedia – against PhishOracle-generated adversarial phishing webpages and observe a significant drop in their detection rates. In contrast, a multimodal large language model (MLLM)-based phishing detector demonstrates stronger robustness against these adversarial attacks but still is prone to evasion. Our findings highlight the vulnerability of phishing detection models to adversarial attacks, emphasizing the need for more robust detection approaches. Furthermore, we conduct a user study to evaluate whether PhishOracle-generated adversarial phishing webpages can deceive users. The results show that many of these phishing webpages evade not only existing detection models but also users. We also develop the PhishOracle web app, allowing users to input a legitimate URL, select relevant phishing features and generate a corresponding phishing webpage. All resources will be made publicly available on GitHub.