AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
The vulnerability of machine learning models to Membership Inference Attacks (MIAs) has garnered considerable attention in recent years. These attacks determine whether a data sample belongs to the model’s training set or not. Recent research has focused on reference-based attacks, which leverage difficulty calibration with independently trained reference models. While empirical studies have demonstrated its effectiveness, there is a notable gap in our understanding of the circumstances under which it succeeds or fails. In this paper, we take a further step towards a deeper understanding of the role of difficulty calibration. Our observations reveal inherent limitations in calibration methods, leading to the misclassification of non-members and suboptimal performance, particularly on high-loss samples. We further identify that these errors stem from an imperfect sampling of the potential distribution and a strong dependence of membership scores on the model parameters. By shedding light on these issues, we propose RAPID: a query-efficient and computation-efficient MIA that directly Re-leverAges the original membershiP scores to mItigate the errors in Difficulty calibration. Our experimental results, spanning 9 datasets and 5 model architectures, demonstrate that RAPID outperforms previous state-of-the-art attacks (e.g., LiRA and Canary offline) across different metrics while remaining computationally efficient. Our observations and analysis challenge the current de facto paradigm of difficulty calibration in high-precision inference, encouraging greater attention to the persistent risks posed by MIAs in more practical scenarios.