NetEcho: From Real-World Streaming Side-Channels to Full LLM Conversation Recovery

AIにより推定されたラベル
Abstract

In the rapidly expanding landscape of Large Language Model (LLM) applications, real-time output streaming has become the dominant interaction paradigm. While this enhances user experience, recent research reveals that it exposes a non-trivial attack surface through network side-channels. Adversaries can exploit patterns in encrypted traffic to infer sensitive information and reconstruct private conversations. In response, LLM providers and third-party services are deploying defenses such as traffic padding and obfuscation to mitigate these vulnerabilities. This paper starts by presenting a systematic analysis of contemporary side-channel defenses in mainstream LLM applications, with a focus on services from vendors like OpenAI and DeepSeek. We identify and examine seven representative deployment scenarios, each incorporating active/passive mitigation techniques. Despite these enhanced security measures, our investigation uncovers significant residual information that remains vulnerable to leakage within the network traffic. Building on this discovery, we introduce NetEcho, a novel, LLM-based framework that comprehensively unleashes the network side-channel risks of today’s LLM applications. NetEcho is designed to recover entire conversations – including both user prompts and LLM responses – directly from encrypted network traffic. It features a deliberate design that ensures high-fidelity text recovery, transferability across different deployment scenarios, and moderate operational cost. In our evaluations on medical and legal applications built upon leading models like DeepSeek-v3 and GPT-4o, NetEcho can recover avg 70% information of each conversation, demonstrating a critical limitation in current defense mechanisms. We conclude by discussing the implications of our findings and proposing future directions for augmenting network traffic security.

タイトルとURLをコピーしました