One Size Fits All? A Modular Adaptive Sanitization Kit (MASK) for Customizable Privacy-Preserving Phone Scam Detection

AIにより推定されたラベル
Abstract

Phone scams remain a pervasive threat to both personal safety and financial security worldwide. Recent advances in large language models (LLMs) have demonstrated strong potential in detecting fraudulent behavior by analyzing transcribed phone conversations. However, these capabilities introduce notable privacy risks, as such conversations frequently contain sensitive personal information that may be exposed to third-party service providers during processing. In this work, we explore how to harness LLMs for phone scam detection while preserving user privacy. We propose MASK (Modular Adaptive Sanitization Kit), a trainable and extensible framework that enables dynamic privacy adjustment based on individual preferences. MASK provides a pluggable architecture that accommodates diverse sanitization methods – from traditional keyword-based techniques for high-privacy users to sophisticated neural approaches for those prioritizing accuracy. We also discuss potential modeling approaches and loss function designs for future development, enabling the creation of truly personalized, privacy-aware LLM-based detection systems that balance user trust and detection effectiveness, even beyond phone scam context.

タイトルとURLをコピーしました