AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Large language models (LLMs) trained over extensive corpora risk memorizing sensitive, copyrighted, or toxic content. To address this, we propose OBLIVIATE, a robust unlearning framework that removes targeted data while preserving model utility. The framework follows a structured process: extracting target tokens, building retain sets, and fine-tuning with a tailored loss function comprising three components – masking, distillation, and world fact. Using low-rank adapters (LoRA), it ensures efficiency without compromising unlearning quality. We conduct experiments on multiple datasets, including the Harry Potter series, WMDP, and TOFU, using a comprehensive suite of metrics: forget quality (new document-level memorization score), model utility, and fluency. Results demonstrate its effectiveness in resisting membership inference attacks, minimizing the impact on retained data, and maintaining robustness across diverse scenarios.