AIにより推定されたラベル
データセット生成 ネットワークノードの構成 サイバーセキュリティ
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Power grids are becoming more digitized, resulting in new opportunities for the grid operation but also new challenges, such as new threats from the cyber-domain. To address these challenges, cybersecurity solutions are being considered in the form of preventive, detective, and reactive measures. Machine learning-based intrusion detection systems are used as part of detection efforts to detect and defend against cyberattacks. However, training and testing data for these systems are often not available or suitable for use in machine learning models for detecting multi-stage cyberattacks in smart grids. In this paper, we propose a method to generate synthetic data using a graph-based approach for training machine learning models in smart grids. We use an abstract form of multi-stage cyberattacks defined via graph formulations and simulate the propagation behavior of attacks in the network. Within the selected scenarios, we observed promising results, but a larger number of scenarios need to be studied to draw a more informed conclusion about the suitability of synthesized data.