最適化問題

Revisiting Adversarially Learned Injection Attacks Against Recommender Systems

Authors: Jiaxi Tang, Hongyi Wen, Ke Wang | Published: 2020-08-11 | Updated: 2020-08-28
敵対的攻撃手法
最適化問題
計算効率

Towards Plausible Differentially Private ADMM Based Distributed Machine Learning

Authors: Jiahao Ding, Jingyi Wang, Guannan Liang, Jinbo Bi, Miao Pan | Published: 2020-08-11
プライバシー保護手法
最適化問題
計算効率

Robust Machine Learning via Privacy/Rate-Distortion Theory

Authors: Ye Wang, Shuchin Aeron, Adnan Siraj Rakin, Toshiaki Koike-Akino, Pierre Moulin | Published: 2020-07-22 | Updated: 2021-05-18
プライバシー評価
最適化問題
防御メカニズム

Improved Adversarial Training via Learned Optimizer

Authors: Yuanhao Xiong, Cho-Jui Hsieh | Published: 2020-04-25
ポイズニング
最適化問題
適応型敵対的訓練

A Black-box Adversarial Attack Strategy with Adjustable Sparsity and Generalizability for Deep Image Classifiers

Authors: Arka Ghosh, Sankha Subhra Mullick, Shounak Datta, Swagatam Das, Rammohan Mallipeddi, Asit Kr. Das | Published: 2020-04-24 | Updated: 2021-09-09
ポイズニング
敵対的攻撃手法
最適化問題

Towards Federated Learning With Byzantine-Robust Client Weighting

Authors: Amit Portnoy, Yoav Tirosh, Danny Hendler | Published: 2020-04-10 | Updated: 2021-05-18
ポイズニング
ロバスト性向上手法
最適化問題

Private Knowledge Transfer via Model Distillation with Generative Adversarial Networks

Authors: Di Gao, Cheng Zhuo | Published: 2020-04-05
プライバシー問題
情報理論的プライバシー
最適化問題

HYDRA: Pruning Adversarially Robust Neural Networks

Authors: Vikash Sehwag, Shiqi Wang, Prateek Mittal, Suman Jana | Published: 2020-02-24 | Updated: 2020-11-10
ロバスト性評価
敵対的訓練
最適化問題

Improving the Tightness of Convex Relaxation Bounds for Training Certifiably Robust Classifiers

Authors: Chen Zhu, Renkun Ni, Ping-yeh Chiang, Hengduo Li, Furong Huang, Tom Goldstein | Published: 2020-02-22
ロバスト性評価
最適化問題
正則化

Black-Box Certification with Randomized Smoothing: A Functional Optimization Based Framework

Authors: Dinghuai Zhang, Mao Ye, Chengyue Gong, Zhanxing Zhu, Qiang Liu | Published: 2020-02-21 | Updated: 2020-10-20
ロバスト性評価
最適化問題
防御手法