敵対的攻撃

Absum: Simple Regularization Method for Reducing Structural Sensitivity of Convolutional Neural Networks

Authors: Sekitoshi Kanai, Yasutoshi Ida, Yasuhiro Fujiwara, Masanori Yamada, Shuichi Adachi | Published: 2019-09-19
実験的検証
敵対的サンプル
敵対的攻撃

Adversarial Attacks and Defenses in Images, Graphs and Text: A Review

Authors: Han Xu, Yao Ma, Haochen Liu, Debayan Deb, Hui Liu, Jiliang Tang, Anil K. Jain | Published: 2019-09-17 | Updated: 2019-10-09
ポイズニング
敵対的サンプル
敵対的攻撃

Exploring the Robustness of NMT Systems to Nonsensical Inputs

Authors: Akshay Chaturvedi, Abijith KP, Utpal Garain | Published: 2019-08-03 | Updated: 2020-02-28
BLEUスコア評価
敵対的攻撃
機械学習

Graph Interpolating Activation Improves Both Natural and Robust Accuracies in Data-Efficient Deep Learning

Authors: Bao Wang, Stanley J. Osher | Published: 2019-07-16
敵対的攻撃
深層学習手法
重み更新手法

Recovery Guarantees for Compressible Signals with Adversarial Noise

Authors: Jasjeet Dhaliwal, Kyle Hambrook | Published: 2019-07-15 | Updated: 2019-08-07
アルゴリズム設計
敵対的攻撃
深層学習手法

Measuring the Transferability of Adversarial Examples

Authors: Deyan Petrov, Timothy M. Hospedales | Published: 2019-07-14
敵対的サンプル
敵対的攻撃
深層学習手法

Stateful Detection of Black-Box Adversarial Attacks

Authors: Steven Chen, Nicholas Carlini, David Wagner | Published: 2019-07-12
ポイズニング
攻撃検出
敵対的攻撃

Adversarial Objects Against LiDAR-Based Autonomous Driving Systems

Authors: Yulong Cao, Chaowei Xiao, Dawei Yang, Jing Fang, Ruigang Yang, Mingyan Liu, Bo Li | Published: 2019-07-11
敵対的サンプル
敵対的攻撃
深層学習手法

Why Blocking Targeted Adversarial Perturbations Impairs the Ability to Learn

Authors: Ziv Katzir, Yuval Elovici | Published: 2019-07-11
敵対的サンプル
敵対的攻撃
深層学習手法

Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions

Authors: Yao Qin, Nicholas Frosst, Sara Sabour, Colin Raffel, Garrison Cottrell, Geoffrey Hinton | Published: 2019-07-05 | Updated: 2020-02-18
敵対的サンプル
敵対的攻撃
深層学習手法