モデルの頑健性保証

Adversarial Logit Pairing

Authors: Harini Kannan, Alexey Kurakin, Ian Goodfellow | Published: 2018-03-16
モデルの頑健性保証
敵対的学習
機械学習手法

Generating Artificial Data for Private Deep Learning

Authors: Aleksei Triastcyn, Boi Faltings | Published: 2018-03-08 | Updated: 2019-04-28
プライバシー手法
モデルの頑健性保証
差分プライバシー

Shield: Fast, Practical Defense and Vaccination for Deep Learning using JPEG Compression

Authors: Nilaksh Das, Madhuri Shanbhogue, Shang-Tse Chen, Fred Hohman, Siwei Li, Li Chen, Michael E. Kounavis, Duen Horng Chau | Published: 2018-02-19
モデルの頑健性保証
敵対的攻撃
機械学習手法

Security Analysis and Enhancement of Model Compressed Deep Learning Systems under Adversarial Attacks

Authors: Qi Liu, Tao Liu, Zihao Liu, Yanzhi Wang, Yier Jin, Wujie Wen | Published: 2018-02-14 | Updated: 2018-03-19
モデルの頑健性保証
敵対的サンプル
敵対的攻撃

Blind Pre-Processing: A Robust Defense Method Against Adversarial Examples

Authors: Adnan Siraj Rakin, Zhezhi He, Boqing Gong, Deliang Fan | Published: 2018-02-05 | Updated: 2018-02-07
データ前処理
モデルの頑健性保証
敵対的学習

Evaluating the Robustness of Neural Networks: An Extreme Value Theory Approach

Authors: Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong Su, Yupeng Gao, Cho-Jui Hsieh, Luca Daniel | Published: 2018-01-31
モデルの頑健性保証
ロバスト性評価
敵対的攻撃

A3T: Adversarially Augmented Adversarial Training

Authors: Akram Erraqabi, Aristide Baratin, Yoshua Bengio, Simon Lacoste-Julien | Published: 2018-01-12
モデルの頑健性保証
ロバスト性向上手法
敵対的攻撃検出

Less is More: Culling the Training Set to Improve Robustness of Deep Neural Networks

Authors: Yongshuai Liu, Jiyu Chen, Hao Chen | Published: 2018-01-09 | Updated: 2018-12-08
モデルの頑健性保証
敵対的サンプル
敵対的攻撃検出

Adversarial Perturbation Intensity Achieving Chosen Intra-Technique Transferability Level for Logistic Regression

Authors: Martin Gubri | Published: 2018-01-06
モデルの頑健性保証
敵対的攻撃手法
機械学習アルゴリズム

The Robust Manifold Defense: Adversarial Training using Generative Models

Authors: Ajil Jalal, Andrew Ilyas, Constantinos Daskalakis, Alexandros G. Dimakis | Published: 2017-12-26 | Updated: 2019-07-10
モデルの頑健性保証
敵対的サンプルの検知
敵対的学習