量子化とプライバシー

Membership Inference Risks in Quantized Models: A Theoretical and Empirical Study

Authors: Eric Aubinais, Philippe Formont, Pablo Piantanida, Elisabeth Gassiat | Published: 2025-02-10
メンバーシップ推論
量子化とプライバシー

Promoting Data and Model Privacy in Federated Learning through Quantized LoRA

Authors: JianHao Zhu, Changze Lv, Xiaohua Wang, Muling Wu, Wenhao Liu, Tianlong Li, Zixuan Ling, Cenyuan Zhang, Xiaoqing Zheng, Xuanjing Huang | Published: 2024-06-16
ウォーターマーキング
プライバシー保護手法
量子化とプライバシー

The Effect of Quantization in Federated Learning: A Rényi Differential Privacy Perspective

Authors: Tianqu Kang, Lumin Liu, Hengtao He, Jun Zhang, S. H. Song, Khaled B. Letaief | Published: 2024-05-16
プライバシー保護
プライバシー保護手法
量子化とプライバシー

RQP-SGD: Differential Private Machine Learning through Noisy SGD and Randomized Quantization

Authors: Ce Feng, Parv Venkitasubramaniam | Published: 2024-02-09
ウォーターマーキング
プライバシー保護手法
量子化とプライバシー

Quantization-aware Neural Architectural Search for Intrusion Detection

Authors: Rabin Yu Acharya, Laurens Le Jeune, Nele Mentens, Fatemeh Ganji, Domenic Forte | Published: 2023-11-07 | Updated: 2024-03-02
学習の改善
深層学習手法
量子化とプライバシー

Improving Robustness Against Adversarial Attacks with Deeply Quantized Neural Networks

Authors: Ferheen Ayaz, Idris Zakariyya, José Cano, Sye Loong Keoh, Jeremy Singer, Danilo Pau, Mounia Kharbouche-Harrari | Published: 2023-04-25
ロバスト性に関する評価
敵対的サンプル
量子化とプライバシー

QuMoS: A Framework for Preserving Security of Quantum Machine Learning Model

Authors: Zhepeng Wang, Jinyang Li, Zhirui Hu, Blake Gage, Elizabeth Iwasawa, Weiwen Jiang | Published: 2023-04-23 | Updated: 2023-10-13
セキュリティ分析
最適化手法
量子化とプライバシー

Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks

Authors: Rémi Bernhard, Pierre-Alain Moellic, Jean-Max Dutertre | Published: 2019-09-27 | Updated: 2020-07-06
敵対的サンプル
敵対的攻撃
量子化とプライバシー