過剰適合と記憶化

SoK: Unintended Interactions among Machine Learning Defenses and Risks

Authors: Vasisht Duddu, Sebastian Szyller, N. Asokan | Published: 2023-12-07 | Updated: 2024-04-04
ウォーターマーキング
敵対的サンプル
過剰適合と記憶化

Why Train More? Effective and Efficient Membership Inference via Memorization

Authors: Jihye Choi, Shruti Tople, Varun Chandrasekaran, Somesh Jha | Published: 2023-10-12
サンプル複雑性
メンバーシップ推論
過剰適合と記憶化

A Duty to Forget, a Right to be Assured? Exposing Vulnerabilities in Machine Unlearning Services

Authors: Hongsheng Hu, Shuo Wang, Jiamin Chang, Haonan Zhong, Ruoxi Sun, Shuang Hao, Haojin Zhu, Minhui Xue | Published: 2023-09-15 | Updated: 2024-01-15
データ保護手法
プライバシー手法
過剰適合と記憶化

Generative Adversarial Networks Unlearning

Authors: Hui Sun, Tianqing Zhu, Wenhan Chang, Wanlei Zhou | Published: 2023-08-19
クラス不均衡
生成的敵対ネットワーク
過剰適合と記憶化

Parameters or Privacy: A Provable Tradeoff Between Overparameterization and Membership Inference

Authors: Jasper Tan, Blake Mason, Hamid Javadi, Richard G. Baraniuk | Published: 2022-02-02 | Updated: 2022-11-30
プライバシーリスク管理
メンバーシップ開示リスク
過剰適合と記憶化

SHAPr: An Efficient and Versatile Membership Privacy Risk Metric for Machine Learning

Authors: Vasisht Duddu, Sebastian Szyller, N. Asokan | Published: 2021-12-04 | Updated: 2022-09-05
プライバシーリスク管理
一般化性能
過剰適合と記憶化

On the (In)Feasibility of Attribute Inference Attacks on Machine Learning Models

Authors: Benjamin Zi Hao Zhao, Aviral Agrawal, Catisha Coburn, Hassan Jameel Asghar, Raghav Bhaskar, Mohamed Ali Kaafar, Darren Webb, Peter Dickinson | Published: 2021-03-12
メンバーシップ推論
敵対的攻撃手法
過剰適合と記憶化

How benign is benign overfitting?

Authors: Amartya Sanyal, Puneet K Dokania, Varun Kanade, Philip H. S. Torr | Published: 2020-07-08
敵対的サンプル
敵対的学習
過剰適合と記憶化