機械学習の応用

Structural Robustness for Deep Learning Architectures

Authors: Carlos Lassance, Vincent Gripon, Jian Tang, Antonio Ortega | Published: 2019-09-11
攻撃手法
機械学習の応用
機械学習手法

Deep Neural Network Ensembles against Deception: Ensemble Diversity, Accuracy and Robustness

Authors: Ling Liu, Wenqi Wei, Ka-Ho Chow, Margaret Loper, Emre Gursoy, Stacey Truex, Yanzhao Wu | Published: 2019-08-29
堅牢性検証手法
敵対的サンプル
機械学習の応用

Adversarial Edit Attacks for Tree Data

Authors: Benjamin Paaßen | Published: 2019-08-25 | Updated: 2019-08-27
敵対的サンプル
敵対的攻撃検出
機械学習の応用

Adversary-resilient Distributed and Decentralized Statistical Inference and Machine Learning: An Overview of Recent Advances Under the Byzantine Threat Model

Authors: Zhixiong Yang, Arpita Gang, Waheed U. Bajwa | Published: 2019-08-23 | Updated: 2020-06-02
合意形成アルゴリズム
機械学習の応用
非中央集権的処理

A Compendium on Network and Host based Intrusion Detection Systems

Authors: Rahul-Vigneswaran K, Prabaharan Poornachandran, Soman KP | Published: 2019-04-06
機械学習アルゴリズム
機械学習の応用
深層学習手法

A Conceptual Architecture for Contractual Data Sharing in a Decentralised Environment

Authors: Iain Barclay, Alun Preece, Ian Taylor, Dinesh Verma | Published: 2019-04-05
データの起源と変遷
データ依存性
機械学習の応用

Malware Detection using Machine Learning and Deep Learning

Authors: Hemant Rathore, Swati Agarwal, Sanjay K. Sahay, Mohit Sewak | Published: 2019-04-04
機械学習アルゴリズム
機械学習の応用
深層学習手法

White-to-Black: Efficient Distillation of Black-Box Adversarial Attacks

Authors: Yotam Gil, Yoav Chai, Or Gorodissky, Jonathan Berant | Published: 2019-04-04
敵対的攻撃
機械学習アルゴリズム
機械学習の応用

Active Learning for Network Intrusion Detection

Authors: Amir Ziai | Published: 2019-04-02
アクティブラーニング
データ前処理
機械学習の応用

Building an Efficient Intrusion Detection System Based on Feature Selection and Ensemble Classifier

Authors: Yuyang Zhou, Guang Cheng, Shanqing Jiang, Mian Dai | Published: 2019-04-02 | Updated: 2020-04-02
アンサンブル学習
機械学習の応用
評価指標