敵対的学習

A Dynamic-Adversarial Mining Approach to the Security of Machine Learning

Authors: Tegjyot Singh Sethi, Mehmed Kantardzic, Lingyu Lyua, Jiashun Chen | Published: 2018-03-24
モデル抽出攻撃
モデル抽出攻撃の検知
敵対的学習

Improving DNN Robustness to Adversarial Attacks using Jacobian Regularization

Authors: Daniel Jakubovitz, Raja Giryes | Published: 2018-03-23 | Updated: 2019-05-28
モデルの頑健性保証
敵対的学習
正則化

Adversarial Defense based on Structure-to-Signal Autoencoders

Authors: Joachim Folz, Sebastian Palacio, Joern Hees, Damian Borth, Andreas Dengel | Published: 2018-03-21
ポイズニング
敵対的学習
画像特徴抽出

Technical Report: When Does Machine Learning FAIL? Generalized Transferability for Evasion and Poisoning Attacks

Authors: Octavian Suciu, Radu Mărginean, Yiğitcan Kaya, Hal Daumé III, Tudor Dumitraş | Published: 2018-03-19 | Updated: 2019-03-08
性能評価指標
敵対的サンプル
敵対的学習

Adversarial Logit Pairing

Authors: Harini Kannan, Alexey Kurakin, Ian Goodfellow | Published: 2018-03-16
モデルの頑健性保証
敵対的学習
機械学習手法

Vulnerability of Deep Learning

Authors: Richard Kenway | Published: 2018-03-16
収束特性
敵対的サンプル
敵対的学習

Variance Networks: When Expectation Does Not Meet Your Expectations

Authors: Kirill Neklyudov, Dmitry Molchanov, Arsenii Ashukha, Dmitry Vetrov | Published: 2018-03-10 | Updated: 2019-02-18
ベイズセキュリティ
敵対的学習
機械学習の応用

Stochastic Activation Pruning for Robust Adversarial Defense

Authors: Guneet S. Dhillon, Kamyar Azizzadenesheli, Zachary C. Lipton, Jeremy Bernstein, Jean Kossaifi, Aran Khanna, Anima Anandkumar | Published: 2018-03-05
敵対的サンプルの検知
敵対的学習
機械学習技術

Understanding and Enhancing the Transferability of Adversarial Examples

Authors: Lei Wu, Zhanxing Zhu, Cheng Tai, Weinan E | Published: 2018-02-27
モデル評価手法
敵対的学習
敵対的攻撃分析

Adversarial Training for Probabilistic Spiking Neural Networks

Authors: Alireza Bagheri, Osvaldo Simeone, Bipin Rajendran | Published: 2018-02-22 | Updated: 2018-02-26
スパイキングニューラルネットワーク
敵対的学習
敵対的訓練