敵対的サンプル

A Direct Approach to Robust Deep Learning Using Adversarial Networks

Authors: Huaxia Wang, Chun-Nam Yu | Published: 2019-05-23
ポイズニング
敵対的サンプル
生成的敵対ネットワーク

On Norm-Agnostic Robustness of Adversarial Training

Authors: Bai Li, Changyou Chen, Wenlin Wang, Lawrence Carin | Published: 2019-05-15
ポイズニング
敵対的サンプル
敵対的訓練

Interpreting and Evaluating Neural Network Robustness

Authors: Fuxun Yu, Zhuwei Qin, Chenchen Liu, Liang Zhao, Yanzhi Wang, Xiang Chen | Published: 2019-05-10
ロバスト推定
堅牢性検証手法
敵対的サンプル

Adversarial Image Translation: Unrestricted Adversarial Examples in Face Recognition Systems

Authors: Kazuya Kakizaki, Kosuke Yoshida | Published: 2019-05-09 | Updated: 2020-01-28
性能低下の要因
敵対的サンプル
敵対的攻撃検出

Adaptive Generation of Unrestricted Adversarial Inputs

Authors: Isaac Dunn, Hadrien Pouget, Tom Melham, Daniel Kroening | Published: 2019-05-07 | Updated: 2019-10-01
敵対的サンプル
敵対的攻撃検出
適応型敵対的訓練

Adversarial Examples Are Not Bugs, They Are Features

Authors: Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, Aleksander Madry | Published: 2019-05-06 | Updated: 2019-08-12
ロバスト推定
性能低下の要因
敵対的サンプル

Better the Devil you Know: An Analysis of Evasion Attacks using Out-of-Distribution Adversarial Examples

Authors: Vikash Sehwag, Arjun Nitin Bhagoji, Liwei Song, Chawin Sitawarin, Daniel Cullina, Mung Chiang, Prateek Mittal | Published: 2019-05-05
ポイズニング
敵対的サンプル
敵対的攻撃検出

Transfer of Adversarial Robustness Between Perturbation Types

Authors: Daniel Kang, Yi Sun, Tom Brown, Dan Hendrycks, Jacob Steinhardt | Published: 2019-05-03
敵対的サンプル
敵対的攻撃検出
適応型敵対的訓練

NATTACK: Learning the Distributions of Adversarial Examples for an Improved Black-Box Attack on Deep Neural Networks

Authors: Yandong Li, Lijun Li, Liqiang Wang, Tong Zhang, Boqing Gong | Published: 2019-05-01 | Updated: 2019-12-09
敵対的サンプル
敵対的攻撃手法
深層学習技術

Detecting Adversarial Examples through Nonlinear Dimensionality Reduction

Authors: Francesco Crecchi, Davide Bacciu, Battista Biggio | Published: 2019-04-30 | Updated: 2019-05-01
敵対的サンプル
敵対的攻撃手法
深層学習技術