敵対的サンプル

Adversarial Feature Desensitization

Authors: Pouya Bashivan, Reza Bayat, Adam Ibrahim, Kartik Ahuja, Mojtaba Faramarzi, Touraj Laleh, Blake Aaron Richards, Irina Rish | Published: 2020-06-08 | Updated: 2022-01-04
アルゴリズム
敵対的サンプル
敵対的サンプルの検知

Towards Understanding Fast Adversarial Training

Authors: Bai Li, Shiqi Wang, Suman Jana, Lawrence Carin | Published: 2020-06-04
学習の改善
敵対的サンプル
敵対的攻撃検出

Stochastic Security: Adversarial Defense Using Long-Run Dynamics of Energy-Based Models

Authors: Mitch Hill, Jonathan Mitchell, Song-Chun Zhu | Published: 2020-05-27 | Updated: 2021-03-18
敵対的サンプル
敵対的攻撃
機械学習技術

Enhancing Resilience of Deep Learning Networks by Means of Transferable Adversaries

Authors: Moritz Seiler, Heike Trautmann, Pascal Kerschke | Published: 2020-05-27
トレーニングデータ生成
敵対的サンプル
防御効果分析

Adversarial Attack on Hierarchical Graph Pooling Neural Networks

Authors: Haoteng Tang, Guixiang Ma, Yurong Chen, Lei Guo, Wei Wang, Bo Zeng, Liang Zhan | Published: 2020-05-23
ポイズニング
敵対的サンプル
敵対的攻撃

Synthesizing Unrestricted False Positive Adversarial Objects Using Generative Models

Authors: Martin Kotuliak, Sandro E. Schoenborn, Andrei Dan | Published: 2020-05-19
攻撃の評価
敵対的サンプル
敵対的サンプルの脆弱性

Universalization of any adversarial attack using very few test examples

Authors: Sandesh Kamath, Amit Deshpande, K V Subrahmanyam, Vineeth N Balasubramanian | Published: 2020-05-18 | Updated: 2022-10-28
性能評価指標
敵対的サンプル
深層学習技術

Toward Adversarial Robustness by Diversity in an Ensemble of Specialized Deep Neural Networks

Authors: Mahdieh Abbasi, Arezoo Rajabi, Christian Gagne, Rakesh B. Bobba | Published: 2020-05-17
多様性の促進
性能評価指標
敵対的サンプル

Universal Adversarial Perturbations: A Survey

Authors: Ashutosh Chaubey, Nikhil Agrawal, Kavya Barnwal, Keerat K. Guliani, Pramod Mehta | Published: 2020-05-16
アルゴリズム
損失関数
敵対的サンプル

Ethical Adversaries: Towards Mitigating Unfairness with Adversarial Machine Learning

Authors: Pieter Delobelle, Paul Temple, Gilles Perrouin, Benoît Frénay, Patrick Heymans, Bettina Berendt | Published: 2020-05-14 | Updated: 2020-09-01
公平性評価
敵対的サンプル
機械学習の応用