性能評価

GraphSAC: Detecting anomalies in large-scale graphs

Authors: Vassilis N. Ioannidis, Dimitris Berberidis, Georgios B. Giannakis | Published: 2019-10-21
グラフ表現学習
データ汚染検出
性能評価

Learning to Learn by Zeroth-Order Oracle

Authors: Yangjun Ruan, Yuanhao Xiong, Sashank Reddi, Sanjiv Kumar, Cho-Jui Hsieh | Published: 2019-10-21 | Updated: 2020-02-07
性能評価
損失項
最適化アルゴリズムの選択と評価

Cryptomining Makes Noise: a Machine Learning Approach for Cryptojacking Detection

Authors: Maurantonio Caprolu, Simone Raponi, Gabriele Oligeri, Roberto Di Pietro | Published: 2019-10-21 | Updated: 2020-01-28
ネットワークトラフィック分析
性能評価
機械学習手法

Deep k-NN Defense against Clean-label Data Poisoning Attacks

Authors: Neehar Peri, Neal Gupta, W. Ronny Huang, Liam Fowl, Chen Zhu, Soheil Feizi, Tom Goldstein, John P. Dickerson | Published: 2019-09-29 | Updated: 2020-08-13
バックドア攻撃
性能評価
毒データの検知

White-Box Adversarial Defense via Self-Supervised Data Estimation

Authors: Zudi Lin, Hanspeter Pfister, Ziming Zhang | Published: 2019-09-13
セキュリティ分析
性能評価
敵対的学習

Defending Against Adversarial Attacks by Suppressing the Largest Eigenvalue of Fisher Information Matrix

Authors: Chaomin Shen, Yaxin Peng, Guixu Zhang, Jinsong Fan | Published: 2019-09-13
性能評価
敵対的サンプル
敵対的学習

nGraph-HE2: A High-Throughput Framework for Neural Network Inference on Encrypted Data

Authors: Fabian Boemer, Anamaria Costache, Rosario Cammarota, Casimir Wierzynski | Published: 2019-08-12 | Updated: 2019-08-29
CKKS最適化
性能評価
暗号化技術

A systematic review of fuzzing based on machine learning techniques

Authors: Yan Wang, Peng Jia, Luping Liu, Jiayong Liu | Published: 2019-08-04
データ生成手法
性能評価
機械学習

Boosting Privately: Privacy-Preserving Federated Extreme Boosting for Mobile Crowdsensing

Authors: Yang Liu, Zhuo Ma, Ximeng Liu, Siqi Ma, Surya Nepal, Robert Deng | Published: 2019-07-24 | Updated: 2020-04-10
セキュリティ保証
プライバシー保護
性能評価

ME-Net: Towards Effective Adversarial Robustness with Matrix Estimation

Authors: Yuzhe Yang, Guo Zhang, Dina Katabi, Zhi Xu | Published: 2019-05-28
モデル評価
性能評価
敵対的摂動手法