モデルの頑健性保証

A Convex Relaxation Barrier to Tight Robustness Verification of Neural Networks

Authors: Hadi Salman, Greg Yang, Huan Zhang, Cho-Jui Hsieh, Pengchuan Zhang | Published: 2019-02-23 | Updated: 2020-01-10
モデルの頑健性保証
ロバスト性評価
敵対的学習

Quantifying Perceptual Distortion of Adversarial Examples

Authors: Matt Jordan, Naren Manoj, Surbhi Goel, Alexandros G. Dimakis | Published: 2019-02-21
モデルの頑健性保証
敵対的学習
敵対的攻撃手法

Wasserstein Adversarial Examples via Projected Sinkhorn Iterations

Authors: Eric Wong, Frank R. Schmidt, J. Zico Kolter | Published: 2019-02-21 | Updated: 2020-01-18
Wasserstein距離
モデルの頑健性保証
敵対的攻撃手法

There are No Bit Parts for Sign Bits in Black-Box Attacks

Authors: Abdullah Al-Dujaili, Una-May O'Reilly | Published: 2019-02-19 | Updated: 2019-04-03
モデルの頑健性保証
敵対的攻撃手法
最適化戦略

On Evaluating Adversarial Robustness

Authors: Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow, Aleksander Madry, Alexey Kurakin | Published: 2019-02-18 | Updated: 2019-02-20
モデルの頑健性保証
ロバスト性向上手法
敵対的攻撃手法

The Odds are Odd: A Statistical Test for Detecting Adversarial Examples

Authors: Kevin Roth, Yannic Kilcher, Thomas Hofmann | Published: 2019-02-13 | Updated: 2019-05-09
モデルの頑健性保証
敵対的攻撃
敵対的攻撃手法

Discretization based Solutions for Secure Machine Learning against Adversarial Attacks

Authors: Priyadarshini Panda, Indranil Chakraborty, Kaushik Roy | Published: 2019-02-08 | Updated: 2019-02-11
トリガーの検知
モデルの頑健性保証
ロバスト性向上手法

Understanding the One-Pixel Attack: Propagation Maps and Locality Analysis

Authors: Danilo Vasconcellos Vargas, Jiawei Su | Published: 2019-02-08
モデルの頑健性保証
敵対的攻撃手法
画像分類解釈

The Efficacy of SHIELD under Different Threat Models

Authors: Cory Cornelius, Nilaksh Das, Shang-Tse Chen, Li Chen, Michael E. Kounavis, Duen Horng Chau | Published: 2019-02-01 | Updated: 2019-08-02
モデルの頑健性保証
敵対的攻撃
脅威モデリング

Natural and Adversarial Error Detection using Invariance to Image Transformations

Authors: Yuval Bahat, Michal Irani, Gregory Shakhnarovich | Published: 2019-02-01
データキュレーション
モデルの頑健性保証
ロバスト性向上