文献データベース

Playing the Game of Universal Adversarial Perturbations

Authors: Julien Perolat, Mateusz Malinowski, Bilal Piot, Olivier Pietquin | Published: 2018-09-20 | Updated: 2018-09-25
ロバスト性向上手法
敵対的学習
敵対的攻撃手法

Time is of the Essence: Machine Learning-based Intrusion Detection in Industrial Time Series Data

Authors: Simon Duque Anton, Lia Ahrens, Daniel Fraunholz, Hans Dieter Schotten | Published: 2018-09-20
IoTセキュリティ
IoTトラフィック特性
異常検出手法

HashTran-DNN: A Framework for Enhancing Robustness of Deep Neural Networks against Adversarial Malware Samples

Authors: Deqiang Li, Ramesh Baral, Tao Li, Han Wang, Qianmu Li, Shouhuai Xu | Published: 2018-09-18
ロバスト性向上手法
敵対的サンプル
敵対的攻撃手法

Comparison of Deep Learning and the Classical Machine Learning Algorithm for the Malware Detection

Authors: Mohit Sewak, Sanjay K. Sahay, Hemant Rathore | Published: 2018-09-16
マルウェア検出
性能評価指標

Adversarial Reinforcement Learning for Observer Design in Autonomous Systems under Cyber Attacks

Authors: Abhishek Gupta, Zhaoyuan Yang | Published: 2018-09-15
オンライン学習
ロバスト性向上手法
敵対的攻撃手法

Online Cyber-Attack Detection in Smart Grid: A Reinforcement Learning Approach

Authors: Mehmet Necip Kurt, Oyetunji Ogundijo, Chong Li, Xiaodong Wang | Published: 2018-09-14
POMDP問題
オンライン学習
状態遷移モデル

Defensive Dropout for Hardening Deep Neural Networks under Adversarial Attacks

Authors: Siyue Wang, Xiao Wang, Pu Zhao, Wujie Wen, David Kaeli, Peter Chin, Xue Lin | Published: 2018-09-13
モデルの頑健性保証
ロバスト性向上
敵対的サンプル

Query-Efficient Black-Box Attack by Active Learning

Authors: Pengcheng Li, Jinfeng Yi, Lijun Zhang | Published: 2018-09-13
クエリ生成手法
モデルの頑健性保証
敵対的攻撃

Adversarial Examples: Opportunities and Challenges

Authors: Jiliang Zhang, Chen Li | Published: 2018-09-13 | Updated: 2019-09-23
モデルの頑健性保証
敵対的サンプル
防御手法

Deep Learning in Information Security

Authors: Stefan Thaler, Vlado Menkovski, Milan Petkovic | Published: 2018-09-12
モデルアーキテクチャ
モデルの頑健性保証
特徴抽出手法