文献データベース

Purifying Adversarial Perturbation with Adversarially Trained Auto-encoders

Authors: Hebi Li, Qi Xiao, Shixin Tian, Jin Tian | Published: 2019-05-26
攻撃タイプ
敵対的サンプルの脆弱性
機械学習手法

Adversarial Distillation for Ordered Top-k Attacks

Authors: Zekun Zhang, Tianfu Wu | Published: 2019-05-25
敵対的サンプル
敵対的サンプルの脆弱性
機械学習手法

Trust but Verify: An Information-Theoretic Explanation for the Adversarial Fragility of Machine Learning Systems, and a General Defense against Adversarial Attacks

Authors: Jirong Yi, Hui Xie, Leixin Zhou, Xiaodong Wu, Weiyu Xu, Raghuraman Mudumbai | Published: 2019-05-25
敵対的サンプル
敵対的攻撃検出
音声信号処理

Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness

Authors: Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, Jun Zhu | Published: 2019-05-25 | Updated: 2020-02-20
一般化の影響
敵対的サンプル
機械学習手法

Enhancing Adversarial Defense by k-Winners-Take-All

Authors: Chang Xiao, Peilin Zhong, Changxi Zheng | Published: 2019-05-25 | Updated: 2019-10-29
スパース性最適化
敵対的サンプルの脆弱性
機械学習手法

The advantages of multiple classes for reducing overfitting from test set reuse

Authors: Vitaly Feldman, Roy Frostig, Moritz Hardt | Published: 2019-05-24
モデル抽出攻撃
一般化の影響
性能評価指標

Devil in the Detail: Attack Scenarios in Industrial Applications

Authors: Simon D. Duque Anton, Alexander Hafner, Hans Dieter Schotten | Published: 2019-05-24
サイバーセキュリティ
プロセス環境
攻撃タイプ

Privacy Risks of Securing Machine Learning Models against Adversarial Examples

Authors: Liwei Song, Reza Shokri, Prateek Mittal | Published: 2019-05-24 | Updated: 2019-08-25
バックドア攻撃
メンバーシップ推論
敵対的サンプル

Partially Encrypted Machine Learning using Functional Encryption

Authors: Theo Ryffel, Edouard Dufour-Sans, Romain Gay, Francis Bach, David Pointcheval | Published: 2019-05-24 | Updated: 2021-09-23
プライバシー手法
モデル性能評価
対抗的学習

Power up! Robust Graph Convolutional Network via Graph Powering

Authors: Ming Jin, Heng Chang, Wenwu Zhu, Somayeh Sojoudi | Published: 2019-05-24 | Updated: 2021-09-21
クライアントクラスタリング
コミュニティ検出
モデル性能評価