Adversarial Distillation for Ordered Top-k Attacks Authors: Zekun Zhang, Tianfu Wu | Published: 2019-05-25 2019.05.25 2025.04.03 文献データベース
Trust but Verify: An Information-Theoretic Explanation for the Adversarial Fragility of Machine Learning Systems, and a General Defense against Adversarial Attacks Authors: Jirong Yi, Hui Xie, Leixin Zhou, Xiaodong Wu, Weiyu Xu, Raghuraman Mudumbai | Published: 2019-05-25 2019.05.25 2025.04.03 文献データベース
Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness Authors: Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, Jun Zhu | Published: 2019-05-25 | Updated: 2020-02-20 2019.05.25 2025.04.03 文献データベース
Enhancing Adversarial Defense by k-Winners-Take-All Authors: Chang Xiao, Peilin Zhong, Changxi Zheng | Published: 2019-05-25 | Updated: 2019-10-29 2019.05.25 2025.04.03 文献データベース
The advantages of multiple classes for reducing overfitting from test set reuse Authors: Vitaly Feldman, Roy Frostig, Moritz Hardt | Published: 2019-05-24 2019.05.24 2025.04.03 文献データベース
Devil in the Detail: Attack Scenarios in Industrial Applications Authors: Simon D. Duque Anton, Alexander Hafner, Hans Dieter Schotten | Published: 2019-05-24 2019.05.24 2025.04.03 文献データベース
Privacy Risks of Securing Machine Learning Models against Adversarial Examples Authors: Liwei Song, Reza Shokri, Prateek Mittal | Published: 2019-05-24 | Updated: 2019-08-25 2019.05.24 2025.04.03 文献データベース
Partially Encrypted Machine Learning using Functional Encryption Authors: Theo Ryffel, Edouard Dufour-Sans, Romain Gay, Francis Bach, David Pointcheval | Published: 2019-05-24 | Updated: 2021-09-23 2019.05.24 2025.04.03 文献データベース
Power up! Robust Graph Convolutional Network via Graph Powering Authors: Ming Jin, Heng Chang, Wenwu Zhu, Somayeh Sojoudi | Published: 2019-05-24 | Updated: 2021-09-21 2019.05.24 2025.04.03 文献データベース
Robust Attribution Regularization Authors: Jiefeng Chen, Xi Wu, Vaibhav Rastogi, Yingyu Liang, Somesh Jha | Published: 2019-05-23 | Updated: 2019-10-26 2019.05.23 2025.04.03 文献データベース