Topology Attack and Defense for Graph Neural Networks: An Optimization Perspective

Authors: Kaidi Xu, Hongge Chen, Sijia Liu, Pin-Yu Chen, Tsui-Wei Weng, Mingyi Hong, Xue Lin | Published: 2019-06-10 | Updated: 2019-10-14

Attacking Graph Convolutional Networks via Rewiring

Authors: Yao Ma, Suhang Wang, Tyler Derr, Lingfei Wu, Jiliang Tang | Published: 2019-06-10 | Updated: 2019-09-28

Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers

Authors: Hadi Salman, Greg Yang, Jerry Li, Pengchuan Zhang, Huan Zhang, Ilya Razenshteyn, Sebastien Bubeck | Published: 2019-06-09 | Updated: 2020-01-10

Adversarial Attack Generation Empowered by Min-Max Optimization

Authors: Jingkang Wang, Tianyun Zhang, Sijia Liu, Pin-Yu Chen, Jiacen Xu, Makan Fardad, Bo Li | Published: 2019-06-09 | Updated: 2021-11-01

Real or Fake? Learning to Discriminate Machine from Human Generated Text

Authors: Anton Bakhtin, Sam Gross, Myle Ott, Yuntian Deng, Marc'Aurelio Ranzato, Arthur Szlam | Published: 2019-06-07 | Updated: 2019-11-25

Robustness for Non-Parametric Classification: A Generic Attack and Defense

Authors: Yao-Yuan Yang, Cyrus Rashtchian, Yizhen Wang, Kamalika Chaudhuri | Published: 2019-06-07 | Updated: 2020-02-24

A cryptographic approach to black box adversarial machine learning

Authors: Kevin Shi, Daniel Hsu, Allison Bishop | Published: 2019-06-07 | Updated: 2020-02-21

Computing Tight Differential Privacy Guarantees Using FFT

Authors: Antti Koskela, Joonas Jälkö, Antti Honkela | Published: 2019-06-07 | Updated: 2019-11-04

Adversarial Explanations for Understanding Image Classification Decisions and Improved Neural Network Robustness

Authors: Walt Woods, Jack Chen, Christof Teuscher | Published: 2019-06-07 | Updated: 2019-08-06

Can You Trust Your Model’s Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift

Authors: Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D Sculley, Sebastian Nowozin, Joshua V. Dillon, Balaji Lakshminarayanan, Jasper Snoek | Published: 2019-06-06 | Updated: 2019-12-17