AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Cyber-security vulnerabilities are usually published in form of short natural language descriptions (e.g., in form of MITRE’s CVE list) that over time are further manually enriched with labels such as those defined by the Common Vulnerability Scoring System (CVSS). In the Vulnerability AI (Analytics and Intelligence) project, we investigated different types of semantic vulnerability embeddings based on natural language processing (NLP) techniques to obtain a concise representation of the vulnerability space. We also evaluated their use as a foundation for machine learning applications that can support cyber-security researchers and analysts in risk assessment and other related activities. The particular applications we explored and briefly summarize in this report are clustering, classification, and visualization, as well as a new logic-based approach to evaluate theories about the vulnerability space.