Universal Approximation with Certified Networks

AIにより推定されたラベル
Abstract

Training neural networks to be certifiably robust is critical to ensure their safety against adversarial attacks. However, it is currently very difficult to train a neural network that is both accurate and certifiably robust. In this work we take a step towards addressing this challenge. We prove that for every continuous function f, there exists a network n such that: (i) n approximates f arbitrarily close, and (ii) simple interval bound propagation of a region B through n yields a result that is arbitrarily close to the optimal output of f on B. Our result can be seen as a Universal Approximation Theorem for interval-certified ReLU networks. To the best of our knowledge, this is the first work to prove the existence of accurate, interval-certified networks.

タイトルとURLをコピーしました