AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
This work evaluates the performance of Cyber Threat Intelligence (CTI) extraction methods in identifying attack techniques from threat reports available on the web using the MITRE ATT&CK framework. We analyse four configurations utilising state-of-the-art tools, including the Threat Report ATT&CK Mapper (TRAM) and open-source Large Language Models (LLMs) such as Llama2. Our findings reveal significant challenges, including class imbalance, overfitting, and domain-specific complexity, which impede accurate technique extraction. To mitigate these issues, we propose a novel two-step pipeline: first, an LLM summarises the reports, and second, a retrained SciBERT model processes a rebalanced dataset augmented with LLM-generated data. This approach achieves an improvement in F1-scores compared to baseline models, with several attack techniques surpassing an F1-score of 0.90. Our contributions enhance the efficiency of web-based CTI systems and support collaborative cybersecurity operations in an interconnected digital landscape, paving the way for future research on integrating human-AI collaboration platforms.