AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
Agricultural production is highly dependent on naturally occurring environmental conditions like change of seasons and the weather. Especially in fruit and wine growing, late frosts occurring shortly after the crops have sprouted have the potential to cause massive damage to plants [L1,L2] [1]. In this article we present a cost-efficient temperature monitoring system for detecting and reacting to late frosts to prevent crop failures. The proposed solution includes a data space where Internet of Things (IoT) devices can form a cyber-physical system (CPS) to interact with their nearby environment and securely exchange data. Based on this data, more accurate predictions can be made in the future using machine learning (ML), which will further contribute to minimising economic damage caused by crop failures.