AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
With the rapid growth of malware attacks, more antivirus developers consider deploying machine learning technologies into their productions. Researchers and developers published various machine learning-based detectors with high precision on malware detection in recent years. Although numerous machine learning-based malware detectors are available, they face various machine learning-targeted attacks, including evasion and adversarial attacks. This project explores how and why adversarial examples evade malware detectors, then proposes a randomised chaining method to defend against adversarial malware statically. This research is crucial for working towards combating the pertinent malware cybercrime.