AIにより推定されたラベル
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
We propose a method to generate audio adversarial examples that can attack a state-of-the-art speech recognition model in the physical world. Previous work assumes that generated adversarial examples are directly fed to the recognition model, and is not able to perform such a physical attack because of reverberation and noise from playback environments. In contrast, our method obtains robust adversarial examples by simulating transformations caused by playback or recording in the physical world and incorporating the transformations into the generation process. Evaluation and a listening experiment demonstrated that our adversarial examples are able to attack without being noticed by humans. This result suggests that audio adversarial examples generated by the proposed method may become a real threat.