AIにより推定されたラベル
メンバーシップ推論 メンバーシップ開示リスク 敵対的攻撃手法
※ こちらのラベルはAIによって自動的に追加されました。そのため、正確でないことがあります。
詳細は文献データベースについてをご覧ください。
Abstract
We demonstrate how a target model’s generalization gap leads directly to an effective deterministic black box membership inference attack (MIA). This provides an upper bound on how secure a model can be to MIA based on a simple metric. Moreover, this attack is shown to be optimal in the expected sense given access to only certain likely obtainable metrics regarding the network’s training and performance. Experimentally, this attack is shown to be comparable in accuracy to state-of-art MIAs in many cases.